Experiments with Simulated Humanoid Robots

Hans-Dieter Burkhard and Monika Domanska

Humboldt University Berlin, Institute of Informatics, Germany
http://www.naoteamhumboldt.de

Abstract. Experimenting with real robots is limited by the available
ressources: Complex hardware is costly, and it needs time and experience
for setup and maintenance. Simulated robots can be used as alternative.
Our RoboNewbie project is a basic framework for experimenting with
simulated robots. It serves as an inspiration for beginners, and it provides
room for many challenging experiments. The RoboNewbie agents run in
the simulation environment of SimSpark RCSS, the official RoboCup 3D
simulator, where the simulated robots are models of the humanoid Robot
NAO of the French Company Aldebaran. Different example agents pro-
vide easily understandable interfaces to simulated sensors and effectors
of the robot as well as simple control structures. The framework has been
successfully used at different courses where the participants needed only
few hours to understand the usage of the framework and to develop own
agents for different tasks.

Keywords: Robotics Tutorials, RoboCup, e-Learning

1 Introduction

Understanding grows with active commitment: to ”do” something, to master it,
provides a deeper understanding. Experiencing with own experiments is of course
an important prerequisite for studies in Robotics and Artificial Intelligence as
well. But experimenting with real robots is difficult not only because of expensive
hardware. Maintaining the robots and set ups for experiments are very time
consuming even for experienced people. Experiments at home as needed for e-
learning require a deep technical understanding by the students, i.e. experiences
that they are just going to learn. So it is not surprising that simple hardware is
still broadly used in robot experiments, hardware which is far behind the recent
technical developments, not to talk about e.g. complex humanoid robots. The
collection of papers in [1] can be understood as an illustration of our statements.

Simulated robots in simulated environments can be used as an alternative
for complex hardware. The RoboCup community has more than 15 years of
experiences with real and simulated robots in the field of soccer playing robots
[2]. Soccer playing robots have been established as a challenging test field for
the progress in scientific research and technical developments. Robots have to
be able to control their bodies and their motions according to soccer play, they
must perceive a dynamically changing environment and they have to choose



28 H-D. Burkhard, M. Domanska

successful actions out of many options in real time. They have to cooperate
with team mates and to pay attention to opponents. Several thousand scientists
and students are participating in the annual RoboCup competitions in different
leagues with different types of real and simulated robots. The humanoid robot
Nao of the French Company Aldebaran [5] is used in the Standard Platform
League, while its simulated version is used in the 3D-Simulation League. The
official SimSpark RoboCup 3D Soccer Simulation (SimSpark RCSS) [3] provides
an excellent environment for experiments with simulated complex robots (see
Section 3). It provides a physical simulation using ODE [7] for the body dynamics
of the robot Nao and the soccer environment.

Our RoboNewbie Project is a basic framework based on JAVA for the devel-
opment of simulated humanoid robots. It provides easy understandable interfaces
to simulated sensors and effectors of the robot as well as a simple control struc-
ture. It runs in the environment of the SimSpark RCSS, thus it can but need
not be used for soccer playing robots. Users can develop their own motions, e.g.
for dancing, gymnastics or kicking a ball.

The RoboNewbie Project implements some kind of ”minimalistic approach”
with respect to Robotics. Users are able to start without special knowledge about
robots. They can learn by their own experiences about the basic concepts of per-
ception, motion, control, synchronization, and integration. All related program
code in RoboNewbie is understandable from simple principles without further
knowledge. That concerns the structure of the code as well as the underlying
computational methods. As soon as users learn more about Robotics, they will
be able to extend the programs accordingly, e.g. concerning complex motions or
world modelling.

Following some hints of the reviewers, we would also like to emphasize the
potential of the framework for the research on foundations. e.g., on computa-
tional models as well as on different problems in cognitive science. It can be
useful in verifying models and in gathering large data sets for experiments in
data mining.

The paper is organized as follows: After an overview about the concept
and the downloadable resources of the RoboNewbie project, we give a short
overview about SimSpark RCSS, and we describe the communication between
the RoboNewbie agents and SimSpark RCSS. The main part of the paper in
Section 5 discusses the details of the RoboNewbie framework, and the paper
ends with results of practical evaluations and our conclusions.

2 The RoboNewbie Project and its Resources

The main goal of the RoboNewbie Project is to provide an uncomplicated start-
ing point to the programming of complex robots with minimal requirements and
pre-knowledge. The users are only supposed to have some programming back-
ground (Java) and some technical/mathematical understanding. More knowledge
about robotics can be provided in parallel to the exercises with RoboNewbie,
e.g. in introductory tutorials (as we already did) or by e-Learning material. At



Experiments with Simulated Humanoid Robots 29

its present stage, RoboNewbie is not prepared as a complete course material on
university level like e.g. the course ” Autonomous Multiagent Systems” at the
University of Texas [8]. But it is planned to integrate it in a e-learning course
on Robotics.

The objectives behind RoboNewbie is the realization of the following require-
ments:

— Holistic view on robots: For beginners and especially for pupils in schools, it is
more appealing to see a robot behave like a human than to test and calibrate
the behavior of a sensor. Of course, when dealing with more complex tasks,
users will experience the need to have better knowledge about the usage of
sensors and actuators, and then they may draw their own conclusions.

— Motivating scenario: Application fields from daily life with known properties
and rules are well suited. Robots which imitate human skills are especially
motivating.

— Scalable tasks: Unexperienced users should have no difficulties to perform
first steps with own experiments and later move to more complex tasks with
unlimited challenges.

— Low requirements: The usability would be restricted if peoples need to have
education on Robotics or if they are supposed to have deep knowledge in
hardware and software. To be usable at schools, basic programming skills
and interests in mathematics and natural sciences should be sufficient.

— Low costs: The costs of a learning system include money and efforts for
purchase, set up, and maintenance, respectively. They should be as low as
possible to permit a broad usage.

The users of the RoboNewbie project can find all materials on the web page
of Berlin United — Nao Team Humboldt [6]. Besides links to RoboCup, Nao
(Aldebaran) and the SimSpark-Wiki, it contains resources for download:

— Description of Installation and first steps.

— Sources of the RoboNewbie Agent programmed in JAVA 7 and prepared for
usage under Netbeans.

— Quick start tutorial: Introduction to the features and the usage of the agent.

— Motion Editor for the design of Keyframe Motions (needs JAVA 3D to be
installed).

— SimSpark RoboCup 3D Soccer Simulation (SimSpark RCSS) for Windows
with an introduction to SimSpark RCSS as far as needed for RoboNewbie.

All provided code is open source. Some parts of the RoboNewbie code use code
of the RoboCup team magmaOffenburg [4].

3 SimSpark RoboCup 3D Soccer Simulation

SimSpark RCSS is developed and used by the RoboCup community in the 3D
simulation league. SimSpark is a generic physical multi agent simulator system
for agents in three-dimensional environments. It uses the Open Dynamics Engine



30 H-D. Burkhard, M. Domanska

(ODE [7]) for detecting collisions and for simulating rigid body dynamics. ODE
allows accurate simulation of the physical properties of objects such as velocity,
inertia and friction.

The Simulator SimSpark RCSS consists of two programs (server for simu-
lation and monitor for visualization and interaction) and configuration files. It
models a soccer field with the player bodies (adapted from the robot hardware
of Nao) and the ball. It also controls the rules of the soccer game, i.e. it controls
the game according to the decisions of a referee.

SimSpark RCSS can be used as open source software. This was also an impor-
tant criteria for its usage. It can be downloaded from [3] for different platforms.
A complete preconfigured version for Windows 7 is provided for RoboNewbie
which can be downloaded from the RoboNewbie web page [6]. Nevertheless, the
RoboNewbie agents run with SimSpark RCSS under other platforms, too. By
some small changes in the configuration files, the soccer rules are simplified for
first usages with RoboNewbie.

The SimSpark RCSS project itself is constantly evolving according to the
progress in the RoboCup initiative. The version (compiled in June 2012) on the
RoboNewbie web pages serves for stable usage and avoids potential incompati-
bility problems by new RoboCup versions.

SimSpark RCSS is documented in a Wiki [3] with download links to the
latest versions as used in the competitions. The Wiki documentation is thought
to represent the actual state of the simulator by continuous updates. But since
different developers are volunteering in parallel on different tasks in the project,
the structure of the Wiki is not always optimal, and occasionally some outdated
information is still present. Moreover, the Wiki is directed to experienced users
which makes it sometimes difficult to understand for novices.

To provide an easy access, the down loads of the RoboNewbie project contain
an introduction to SimSpark RCSS which refers to the provided version (as
described above). It gives the user an overview about

— Simulation using SimSpark RCSS: The SoccerServer and the Monitor.
— The Nao-Model used by SimSpark RCSS.

— Communication between Agents and SimSpark RCSS (with explanations of
the message formats as background information).

— Synchronization between SimSpark RCSS and the Agents.
— Monitor and User Interface.

Running a Game.

Actually, our description of SimSpark RCSS provides also some ”background”
information which is not needed for beginners, e.g. details about the message
formats. Since RoboNewbie permits an easy and direct access to the items of
messages like sensor values and motor commands, the syntax of messages must
not be known by users. Nevertheless, we have included the information for deeper
understanding of RoboNewbie in case of interest.



Experiments with Simulated Humanoid Robots 31

4 Communication between Agents and SimSpark RCSS

SimSpark RCSS implements the soccer environment including the bodies of the
Nao robots. It models all physical interactions between players, ball and envi-
ronment. The agents implement the control of the players.

The interface between the physical environment and the control of real robots
is constituted by sensors and actuators: Robots perceive the world by sensory
data (e.g. by vision, accelerometer, force sensors etc.), and influence the world
by their actuators (motors, voice etc.).

In simulation, the sensory data are calculated by the simulator according
to the situation in the simulated world (e.g. observable objects) and sent via
message exchange to the agent. Then, like a real robot, the agent can update
its belief about the situation and decide for actions it wants to perform. A real
robot would then activate its actuators (e.g. motors at the joints) to perform the
intended actions. In simulation, the agent communicates with SimSpark RCSS
again by messages which transmit the actuator commands. Both are synchro-
nized by a communication cycle of 20 milliseconds.

In SimSpark RCSS, the message transfer is optimized for minimizing the
server load: All sensory data are packed in one server message to be sent at the
beginning of a communication cycle. Vice versa, the agent can send all action
commands by a single agent message before the end of a cycle. The message
formats follow a special syntactic scheme based on symbolic expressions (S-
expressions). As a consequence of collecting data into one message, the prepara-
tion of the data in an agent needs more efforts than in a real robot. It is a special
feature of the RoboNewbie agent that this preparation is hidden from the user:
The agent provides special getter- and setter-methods which allow the access to
the sensor (perceptor) data and the setting of actuator (effector) commands in
a similar way as in a real robot.

The interaction between the server and the agent works as follows:

1. At the beginning of a cycle at a time t, the server sends individual server
messages with sensations to the agents.

2. During this cycle, the agents can decide for new actions depending on their
beliefs about the situation.

3. Before the end of this cycle, the agents should send their agent messages to
the server for desired actions.

4. The server collects the agents messages and calculates the resulting new sit-
uation (poses and locations of the players, ball movement etc.) according to
the laws of physics and the rules of the game. This is done during the follow-
ing cycle at time t+1. (Note that the server message sent at the beginning
of this cycle regards the situation calculated in the previous cycle at time t).

5. At the beginning of the subsequent cycle, at time t+2, the sensor data in
the server message is based on the effects of the actions at time t+1 which
were chosen by the agent according the information from time t.

A special feature of SimSpark RCSS is the use of so-called perceptors instead
of sensors. The perceptor data can be regarded as already pre-processed sensor



32 H-D. Burkhard, M. Domanska

data. For example, the image data from the camera are not presented by a pixel
matrix. Instead, the vision perceptor sends a collection of observable objects
with egocentric coordinates relatively to the camera of the observing agent. In
a similar way, actions commands of the agent are encoded as so-called effector
values and sent to the server which translates them to motor control commands.
The calculation of perceptor values and the interpretation of effector values are
part of the simulator, too. On the agent side, a server message has to be parsed
for the contained perceptor values, and the action commands have to be collected
to the agent message. Both constitute a significant burden for a beginner while
it provides only few insights to robotics. The RoboNewbie users need not to care
about that, because the RoboNewbie agent does all this work in the background.

Besides some effectors related to initial connection with SimSpark RCSS,
there are Hinge Joint Effectors for each of the 22 hinge joints and a Say Per-
ceptor (as of a loudspeaker with limited capacity). The following perceptors are
available in SimSpark RCSS (for details see the Wiki or our SimSpark descrip-
tion):

— Vision Perceptor (as of a camera in the center of the head).

— Hinge Joint Perceptors at each of the 22 hinge joints.

— Accelerometer in the centre of the torso.

— GyroRate Perceptor in the centre of the torso.

Force Resistance Perceptor at each foot.

— Hear Perceptor (as of a directed microphone with limited capacity).

Game State Perceptor (reporting the actual game state of the soccer match).

5 RoboNewbie Framework

The RoboNewbie framework offers a comfortable interface for agents interacting
with SimSpark RCSS. It includes sample agents which illustrate basic concepts
and methods of Robotics and Artificial Intelligence. Users can start exercises
with these agents and learn how to use RoboNewbie and what the programming
of robots is like. They can make their own experiences with different topics and
algorithm by modifications and extensions.

It was a main goal of the project, to provide easily understandable concepts,
methods and programs. There are no complicated structures, and all code is
documented in detail. As a consequence, some more demanding concepts were
replaced by simplier approaches (e.g. keyframe motions instead of inverse kine-
matics, approximated coordinates of observed objects etc.). Nevertheless, the
clear structure of the project supports extensions for more challenging solutions
if wanted.

5.1 Low Level Interface Functionalities

The framework includes interface functionalities on two levels. The lower one
corresponds to the hardware-near functionalities of robots, while the higher one



Experiments with Simulated Humanoid Robots 33

is concerned with more abstract control functionalities. Especially for the lower
level, parts of the code of the team magmaOffenburg [4] was used by us as
documented in our source files.

The hardware-near layer encapsulates the network protocol for interaction
with SimSpark RCSS and it allows access to the simulated hardware entities
corresponding to sensors and motors. The access is implemented by getter func-
tions for perceptor values of different perceptors which can be used similar to
sensor signal queries of real robots. Related setter functions for effector values
can be used for the control of actuators.

Especially the low level interface functionalities for SimSpark RCSS are a
hurdle for beginners and need time consuming work even for experienced users.
They concern tasks like network connection, synchronisation with the server,
parsing of nested server messages, syntactical analysis of S-expressions, synthe-
sis of agent messages with a lot of technical non-robotics details. The users of
RoboNewbie need not to care about all this details, the framework offers er-
gonomic methods for the interaction with the simulated environment in an easy
understandable way similar to the methods used by the operating systems of
real robots. Users can learn to use these methods after a short training time (cf.
the evaluation in Section 6).

The synchronization protocol was already described in Section 4. The user
needs not to care about the communication, except the delays by the protocol
and the duration of the cycles given by 20 msec. It is necessary to fetch a server
message at each cycle and to send the agent message before the end of the
cycle. The related control structures are already implemented in the examples
and explained by the tutorial. Hence, if the calculations during one cycle do not
exceed the cycle time, there will be no problem. The needed time depends of
course on the used computer, the example agents run without problems even on
less powerful machines.

The first example ” Agent_BasicStructure” in the tutorial let the users start
with an agent which already implements all low level communication. The agent
simply rises an arm by setting related effector values. The user can experiment
with other values and other effectors just to understand the basic structures.

5.2 Perception

The available perceptors were already listet in Section 4. All perceptor values
can be queried by related getter methods using the perceptor names instead of
the acronyms of the server messages. This allows a comfortable access to the
perceptor data which corresponds to the access of sensor values by a related
operating system of a real robot.

RoboNewbie has already implemented the necessary conversion from the
nested server messages to the perceptor values. For that, the server message
are parsed for the constituents of a tree like structure (again, thanks to the
code of the team magmaOffenburg [4]). According to the analyzed acronyms in
the expressions of the tree, the corresponding perceptor values are filled in by
RoboNewbie.



34 H-D. Burkhard, M. Domanska

The programs ” Agent_TestPerceptorInput” and ” Agent_TestLocalFieldView”
illustrate the usage of the related getter methods and the perceptor values. The
examples serve also as an illustration to the usage of the logger functions de-
scribed in Subsection 5.5. As an exercise of the tutorial, the user can implement
an agent, which lifts the robots arm, when it senses another robot and moves the
arm down, when it does not sense any robot. Which arm is lifted should depend
on the side where the other robot is seen.

Special efforts are needed for the vision perceptor. It provides coordinates of
all objects in the vision range of the camera. SimSpark RCCS in its common
version does not communicate image data. Instead, the communicated informa-
tion can be understood as the result of basic image interpretation, it contains
coordinates of the goal posts, the lines, the ball, and the body parts of robots.

The vision perceptor provides values by egocentric coordinates relatively to
the camera in the centre of the head. Further calculations are necessary to get
the coordinates of objects relatively to the body of the robot. Accurate calcula-
tions would need the inspection of the cinematic chain. The necessary data are
available by the hinge joint perceptors. More calculations including self localiza-
tion are necessary for the transformation into alocentric coordinates. RoboNew-
bie does not provide related programs following the intended ”minimalistic”
approach, because they would not be understandable by beginners without pre-
knowledge about Robotics. Instead, the implementation of related methods can
serve as exercises during courses in Robotics.

As a simple substitute, we have decided to provide only approximations for
the conversion from camera coordinates to robot coordinates. They are docu-
mented in the sources and easily to understand. Users can make experiments
according to the accuracy and draw own conclusions on cinematic relations.

Visual information is provided by SimSpark RCSS only at each third cycle,
and the robot would have to act blindly in between when there are no vision
data available. Hence, the vision information should be stored for the following
cycles. Moreover, the vision perceptor is limited by the camera view range of 120
degrees horizontally and vertically. The robot has to move its head to observe
more objects in the world. Again it is useful to store objects seen before in
other directions. In general, such updating and memorizing of observations is
maintained as belief of the robot in a so called world model. Updates may regard
corrections according to robot motion, guesses for movements of invisible objects
and integration of information communicated by other robots.

Again, a fully elaborated world model is far behind the scope of beginners.
Hence, RoboNewbie provides a very simple version, where just the observed
objects are stored in a simple form. The coordinates of those objects are ref-
erenced with respect to the robots coordinates. Turnings of the head are al-
ready regarded by RoboNewbie, but only by the approximate calculations as
described above. Other movements of the robot like turning or walking are not
regarded. Time stamps indicate the last time of observing an object. The example
” Agent_TestLocalFieldView” illustrating the perception features of RoboNewbie
is provided for the users.



Experiments with Simulated Humanoid Robots 35

5.3 Motions

All intentional motions are performed by controlling the hinge joints by sending
effector values (speed of motors) to SimSpark RCSS. Then the physical simula-
tion engine calculates the effects of the commands regarding physical laws and
updates the simulated world accordingly.

Simple motions like turning the head or rising the arms can be easily pro-
grammed by the users as in the already mentioned examples. The motions can
be controlled using the feedback of hinge joint perceptors. i.e. by sensor-actor
coupling, where the delay of observing an action has to be regarded as described
in Section 4. There is much room for own experiments of users.

More complicated motions like walking need coordinated movements of dif-
ferent joints, users may learn about these problems after some trials. We have
decided to provide keyframe motions in RoboNewbie because they are easily to
understand and to design. The interpolation mechanism for keyframe motions
in RoboNewbie realizes a linear interpolation - users may implement other in-
terpolation methods like splines if they want. Keyframes are stored as text files
which can be edited by any text processing system. Therewith, users could even
design and change motions while using the programs as a blackbox.

RoboNewbie comes with a set of predefined keyframe motions for walk-
ing, turning, stand up and others. Users can change these motions (by chang-
ing the related text files). New motions need an integration into the program
"keyframeMotion”, details are explained in the tutorial and the source code
documentation.

According to simplicity, there are no concepts implemented for interruption
of motions: Each motion is performed completely until its end, and there are no
cyclic motions, e.g. for walking. Instead, continuous walking can be performed
by subsequent calls of a two-step-walk.

The design of keyframe motions is supported by a graphical Motion Editor.
It can be downloaded from the RoboNewbie Web page as well. It shows the
postures of the robot for selected keyframes. Then the keyframes can be edited
in two ways. In the graphical representation the posture can be kneaded into
the desired posture with the mouse. Alternatively, each joint angle can be set
to specified values which are immediately presented by the graphics. Transitions
between keyframes can be defined with specific transition times resulting in a
keyframe sequence as usual.

The program ”agentKeyframeDeveloper” helps in designing keyframes. A
robot performs the motion of the actually edited keyframe file. After each change,
the new motion is performed immediately. If the robot falls down during such a
motion, it stands up by itself. Another helpful program can be used to mirror
keyframes from one side to the other.

The example ”agentSimpleWalkToBall” illustrates the motion concepts. As
an exercise of the tutorial, the users can change that program to implement
obstacle avoidance (walk around the ball without touching it). They can use
motions for walk, stop and turn. Additionally, the agent must be able to recognize
the ball and to decide for the appropriate motion according to the ball position.



36 H-D. Burkhard, M. Domanska

Another exercise is the design of a new motion for kicking the ball. Users can
furthermore do their own experiments e.g. with dancing robots.

In general, keyframe motions are useful for special motions like standing up,
but they are not so well suited e.g. for walking. Walking is still a challenging
problem in Robotics. The users of RoboNewbie will get some understanding
about the task. Moreover, the framework is well suited as a basis for other im-
plementations and for Machine Learning by more educated users. But according
to our ”minimalistic” approach, related implementations are not provided.

5.4 Control Cycle and Decision Making

The basic control cycle follows the classical deliberation approach, often denoted
as the ”sense-think—act—cycle”, or by related similar names. This corresponds
closely to the cycle given by SimSpark RCSS: At first, sensations are provided
to the agent, then the agent decides for appropriate plans and then it sends the
related action commands back to the server.

Critical remarks may come from the community of Embodied Robotics/Al,
e.g. concerning the centralistic and symbolic computations in the classical ap-
proach. To realize concepts of Embodied Robotics/AI one needs to put more
emphasis on local sensor actor coupling, distributed control, embodiment, situ-
atedness, emergent behaviour etc. The real robot Nao as well as its simulated
counterpart with the central control (i.e. our agent) are not primarily designed
for such purposes. It is possible to design sensor actor couplings and other be-
havioural concepts in the RoboNewbie framework, too. One might even split
the agent into different ”parallel” acting parts (implemented e.g. by threads) to
simulate distributed controls, but some synchronization is unavoidable by the
server cycles of SimSpark RCSS.

At the same time, thinking in terms of the ”sense—think—act—cycle” is quite
natural for beginners because it reflects some causal dependencies. It provides
an intuitive and easily maintainable structure in the design of robots. Therefore,
the control cycle in RoboNewbie adopts the related terms for structuring the
run-methods of the agents by cyclic calls of methods sense, think and act. The
think-method is sometimes omitted in case of simpler ("reactive”) agents.

The sense method is reponsible for receiving and processing the perceptor
data by the related RoboNewbie methods. The act methods calls the transfer
of the agent message with the effector commands. What is left is the further
analysis of the perceptor data (e.g. a more elaborated world model) and the
decision for plans and actions to be performed by the robot now and possibly
in the future. By the given structure of RoboNewbie, all this can be included in
the think method. The think method can of course be split into more dedicated
deliberation methods which may be organized hierarchically if needed. Again,
all this is left to exercises during related courses. RoboNewbie provides just a
simple example for illustration, the Agent_SimpleSoccer.

The Agent_SimpleSoccer is able to perform a very simple soccer play: As
long as it is behind the ball and sees the opponent goal, it walks forward while
pushing the ball with its feets. If the condition is not fulfilled, it turns around



Experiments with Simulated Humanoid Robots 37

until it sees the ball, walks to the ball, turns around the ball until it sees the
opponents goal, and then it starts walking towards the goal again. The decisions
are made by a simple decision tree whenever the previous motion is completed
(note that motions can not be interrupted as described above).

It is obvious, that the play of Agent_SimpleSoccer can be improved in many
ways. This is just what we want: The users can collect many ideas for improve-
ments. Improvements may concern better usage of perception (e.g. by a ball
model guiding the search), improved motions (like faster walk), new motions
(like kick or dribble), better control (like path planning). It is also possible to
have more players on the soccer field such that players can cooperate (e.g. by
positioning and passing). This gives room for simple contests during a course.

5.5 Logger

Runtime debugging of programs may be difficult because it affects synchroniza-
tion with the server. Even simple debug messages printed on System.out may
need too much time such that the agent cannot respond in time. It is possible
to use the so-called sync mode which lets SimSpark RCSS wait until all agents
have sent their messages (see [3]). Alternatively, all debug messages can be col-
lected by the program ”Logger” of RoboNewbie. After the agent has finished,
the collected messages are printed out. The usage is shown by the programs
” Agent_TestPerceptorInput” and ” Agent_TestLocalFieldView”. Both programs
provide also examples for the usage of the getter methods for perceptors.

6 Evaluations

We have tested the RoboNewbie framework at different places. It was used at
introductory Robotics courses of about 30 hours during 5-8 days at Ohrid, War-
saw, Novi Sad, and Rijeka, respectively. 20 hours were planned for lectures, 10
hours for introduction and first usages of RoboNewbie. Additional 10-20 hours
were used for further experiments by homework.

RoboNewbie served for illustrating experiments and for exercises in connec-
tion with the theoretical instructions. The participants of the courses learned to
use RoboNewbie during short time and they programmed an improved soccer
player at the end. The work with RoboNewbie was helpful to understand the
theory, and the final evaluation of the courses by the participants resulted in
high marks. Especially the competitions with the improved soccer agent at the
end of the courses were motivating.

This was also the case with the participants of a Robotics course at our
university, where the students had more time (two months) for their studies and
exercises. Students used the time to implement more sophisticated methods and
to try out changes of the framework itself (e.g. other interpolation methods for
keyframes). But it also turned out, that efforts for more sophisticated controls
are limited by the available skills, especially for motions.



38 H-D. Burkhard, M. Domanska

7 Conclusion

In contrast to other experiments in Robotics, the RoboNewbie framework can
be used without special hardware. It simply needs a computer for simulation
of the robot soccer scenario, which is more complex than experiments by many
hardware equipments. It is easy to understand and to use after a short introduc-
tion. No special knowledge (except basic programming in Java) is required to
start with own experiments, and while the users acquire more knowledge, they
can work on more challenging tasks.

The ”minimalistic approach” is useful especially for short courses and for
introductions to longer courses. Later on, the disposability of non-minimalistic
more sophisticated methods could be useful for higher level integrative tasks. It
is impossible to let students implement all desirable algorithms in the limited
time of a course. Joint activities of robots, for example, depend heavily on the
available bodily skills and on the capabilities for interaction and coordination.

The practical evaluations have confirmed our expectations on the RoboNew-
bie project. Beginners in Robotics were able to use the framework after short
introductions. They were able to program own methods in parallel to the theo-
retical concepts and methods provided by classes. Participants have attested the
usefulness of own experiences (which again corresponds to our expectations).

Next plans concern the usage of the RoboNewbie framework in Secondary
Schools, and the integration into an e-Learning course on Robotics.

We are thankful to the whole RoboCup community, especially to the develop-
ers of SimSpark RCSS, to the team magmaOffenburg and to our team NaoTeam
Humboldt, and especially to Yuan Xu.

References

1. Taskin Padir and Sonia Chernova (eds.): Special Issue on Robotics Education.
IEEE Transactions on Education, Volume:56, Issue: 1, 2013.
http://ieeexplore.ieee.org/xpl/tocresult. jsp?isnumber=6423944

2. RoboCup - official web page. http://wuw.robocup.org/. Visited at 20.8.2013

3. SimSpark RCSS Wiki (Documentation of the Simulator).
http://simspark.sourceforge.net/Wiki. Visited at 20.8.2013

4. Homepage Team magmaOffenburg.
http://robocup.fh-offenburg.de/html/index.htm. Visited at 20.8.2013

5. Aldebaran. http://www.aldebaran-robotics.com/en/. Visited at 20.8.2013

6. RoboNewbie http://www.naoteamhumboldt.de/projects/robonewbie/. Visited at
20.8.2013

7. Russell Smith. Open Dynamic Engine User Guide, 2006. http://www.ode.org. Vis-
ited at 20.8.2013

8. Stone, Peter. RoboCup as an Introduction to CS Research. In Daniel Polani, Brett
Browning, Andrea Bonarini, and Kazuo Yoshida, editors, RoboCup-2003: Robot Soc-
cer World Cup VII, Lecture Notes in Artificial Intelligence, pp. 28495, Springer Ver-
lag, Berlin, 2004. The material of the course ” Autonomous Multiagent Systems” at
the University of Texas. (2012) can be found at
http://www.cs.utexas.edu/~todd/cs344m/ Visited at 20.8.2013



